EdgeConv
- class dgNN.layers.EdgeConv(self, in_feats, out_feats, batch_norm=False)
EdgeConv layer from Dynamic Graph CNN for Learning on Point Clouds
\[h_{i}^{(l+1)}=\max _{j \in \mathcal{N}(i)}\left(\Theta \cdot\left(h_{j}^{(l)}-h_{i}^{(l)}\right)+\Phi \cdot h_{i}^{(l)}\right)\]- Parameters
in_feats (int) – input feature size.
out_feats (int) – output feature size.
batch_norm (bool) – whether to use batch normalization
- forward(self, k, src_ind, feat):
- Parameters
k (int) – number of edges per vertex.
src_ind (torch.tensor) – source index tensor of shape \((E)\), where \(E\) is the number of edges.
feat (torch.tensor) – the input feature of shape \((N,F_{in})\), where \(F_{in}\) is the input feature size.
- Returns
the output feature of shape \((N, F_{out})\), where \(F_{out}\) is the output feature size.
- Return type
torch.tensor